

DEPARTMENT OF BIOCHEMISTRY UNIVERSITY OF KASHMIR SRINAGAR-190006

Choice Based Credit System Syllabus for M.Sc. Biochemistry

2024 onwards

alus for

Stichan

BALL

hall hall

rad

IA	PERS, CREDITS,	SEMESTE	DI					
		SEMESTE		Week		Credits	Max Ma	rks
Paper		1115,7			Citain			
Code	Name	Category	L	T	P		Ext.	Int.
BCH24-101CR	Biomolecules	Core	4	0	0	4	80	20
BCH24-101CR BCH24-102CR	Cell Biology	Core	4	0	0	4	80	20
BCH24-102CR BCH24-103CR	Bioenergetics	Core	2	0	0	2	40	10
BCH24-104CR	Lab. Course-I	Core	0	0	8	4	80	20
	Plant Biochemistry	DCE	3	2	0	3+1=4	80	20
BCH24-101DCE	Biochemical Techniques	DCE	3	2	0	3+1=4	80	20
BCH24-102DCE BCH24-001OE	Fundamentals of	OE	1	2	0	1+1=2	40	10
	Biochemistry	· 数十字/35			Tota	l credits 24	Total Marks 600	
		SEMESTI	CRII					
	Metabolism	Core	4	0	0	4	80	20
BCH24-201CR		Core	4	0	0	4	80	20
BCH24-202CR	Molecular Biology	Core	2	0	0	2	40	10
BCH24-203CR	Advanced Techniques	Core	0	0	8	14	80	20
BCH24-204CR	Lab. Course-II	DCE	3	2	0	3+1=4	80	20
BCH24-201DCE	Enzymology		3	2	0	3+1=4	80	20
BCH24-202DCE	Microbiology	DCE	1	2	0	1+1=2	40	10
BCH24-002OE	Protein Biochemistry	OE	1	2	0	1+1=2	40	10
BCH24-001GE	Chronic Diseases	GE	1	12		l Credits 26	0.00	Marks 65
		SEMEST!	CD III		100	i Cremes = -	1	
			-	10	0	4	80	20
BCH24-301CR	Immunology	Core	4	Sec. 15.00 (20.00)	0	4	80	20
BCH24-302CR	Biotechnology	Core	4	0	0	2	40	10
BCH24-303CR	Genetics	Core	2	0			80	20
BCH24-304CR	Lab. Course-III	Core	0	0	8	4	80	20
BCH24-301DCE	Nutritional Biochemistry & Endocrinology	DCE	3	2	0	3+1=4		
BCH24-302DCE	Physiology and Cl. Biochemistry	DCE	3	2	0	3+1=4	80	20
BCH24-303DCE	Chromatin Biology and Cell Signaling	DCE	1	2	0	1+1=2	40	10
BCH24-002GE	Metabolic Disorders	GE	1	2	0	1+1=2	40	10
BCH24-002GE					Tota	al Credits 26	Total	Marks 65
		SEMEST	ER IV	7	ur ur			
BCH24-401CR	Project Dissertation	Core	0	0	20		250	0
BCH24-402CR	Project Assessment	Core	0	8	0	4	100	0
BCH24-401DCE		DCE	0	0	4	2	50	0
BCH24-402DCE		DCE	0	8	0	4	100	0
BCH21-003OE	Cancer Biology	OE	1	2	0	1+1=2	40	10
BCH21-003GE	Biochemical tests & Interp.	GE	1	2	0	1+1=2	40	10
make the second second	micrp.		Total Credits 24			Total	Total Marks 6	

Total credits required for M. Sc. Biochemistry: 96 Total Marks for M.Sc. Biochemistry: 2400

Abbreviations:

CR - Core

DCE - Discipline Centric Elective

GE - General Elective
OE - Open elective
L, T, P - Lectures, Tutorials and Practical, respectively

Sexihar W2

Program Objectives

The two-year M.Sc. program in the Department of Biochemistry endeavors to provide students with excellent training in Biochemistry, emphasizing a solid foundation in basic concepts and rapid advancements in the field. Students will be offered advanced-level theory in courses like biomolecules, metabolism, cell biology, genetics, biochemical techniques, immunology, enzymology, molecular biology, human physiology, recombinant DNA technology and advanced biochemical techniques.

In addition to theoretical knowledge, considerable emphasis is given on hands-on bench training in fundamental areas of biochemistry in the first three semesters. In the fourth semester, the students will get the opportunity to work independently in a research laboratory under the supervision of a principal investigator. To develop oratory and writing skills, students will select a recent and advanced scientific paper from high-profile journals in consultation with assigned mentors and present it before the team of evaluators.

In alignment with the objectives of the program, several elective courses have also been included in the syllabus to impart knowledge in fundamentals in biochemistry, chronic diseases, metabolic disorders, protein biochemistry, cell signaling, and biochemical interpretation for the students in the allied disciplines..

The Department aims to accomplish the following program objectives:

- Equip students with a thorough comprehension of the fundamentals of biochemistry
- Impart knowledge to students so they can use biochemical concepts both theoretically and practically
- Promote lifelong learning to meet the ever evolving professional demands by developing ethical, inter
 personal and team skills
- Train students to critically analyze scientific data, draw objective conclusions, and apply this knowledge for human welfare
- Motivate students for higher education, particularly in research, and provide trained manpower for research institutions and industry

KIN

hav

Program Outcomes

The Master's program in Biochemistry is typically built upon the foundational undergraduate knowledge in biological sciences and chemistry, aiming to deepen the understanding and proficiency in biochemical principles and research methodologies. Some of the most common program outcomes/applications are briefly discussed below:

- Research: The course content of the program is broad and relevant with the changing technology and
 research. The students with M.Sc. in Biochemistry serve as unparallel human resources for the basic or
 most advanced research in biochemistry and other areas of biological sciences including cell biology,
 molecular biology, microbiology, immunology, endocrinology, drug design and development, synthetic
 biology, nanotechnology, cancer biology, medicine and biotechnology.
- 2. Health Sector: The students can join health care setups for management, instructors and services sector. Biochemists perform clinical evaluations that are inevitable for diagnostics or management of patients. They carryout laboratory management by ensuring quality control, minimizing pre and post analytical errors, in proper handling of biological specimens and pathogens and safe bio-waste disposal. Their knowledge in all the important subjects helps them to serve as confident/teachers in medical and paramedical colleges.
- 3. Conceptualizing the Problem and Solution: The local, national and international problems ranging from diseases, environmental issues or food availability are best understood by biochemists and have the potential and training to explore solution by appropriate research design. The biochemist has been playing important roles in confronting infections, addressing population, global warming, food scarcity, and many other unprecedented challenges.
- 4. Biomedical engineering: The development or application of the important biomedical equipment ranging from high end advanced imaging systems to basic analyzers; involve the exploitation of the basic understanding of the difference in the biochemical parameters in disease and normal tissues. Our manpower is playing important role in design or development of such equipment in collaboration with biomedical engineers.
- 5. Agriculture: The understanding of the basic biochemical mechanisms in agricultural plants has enabled us to overcome food scarcity in the world. The science behind the different revolutions in agriculture including developing high-yielding livestock breeds and crops and developing anti-infection agents, disease disease-resistant crop variants helped us improve a lot agricultural produce.
- 6. Pharmaceutical industry: The biochemists play an important role in understanding the pharmacokinetics and dynamics of any potential therapeutic agent. The novel drug targets are identified and their possible interventions are explored by biochemists. Further, the biochemists are the vaccine developers and use their skills in the development of immunological therapies.
- Forensic science: Biochemistry has a major application in this field. The biochemists are well trained
 to analyze biochemical specimens in order to nab the culprit or to resolve paternity disputes.
- 8. Next-generation researchers and scientists: The six-month internship in different research laboratories across the country prepares and motivates the students to pursue a Ph.D. in the cutting-edge areas of Molecular and Cellular Biology. This eventually contributes to producing a cohort of next-generation researchers and scientists.

Ma feel 4 Sept 1 har

SEMESTER I

Course Title: BIOMOLECULES Course Code: BCH24-101CR Credits: 04

Max. Marks: 100 (80+20)

Course Objective: To impart detailed knowledge about different classes of Biomolecules like carbohydrates, amino acids, proteins, lipids, Nucleic acids and their classification, their structural and functional aspects in living cells.

Course Outcome: On completion of this course, the students become well-versed in the structures and functions of biomolecules (carbohydrates, lipids, amino acids, proteins, nucleotides, and nucleic acids) that form the foundation of understanding living organisms. The students can impart knowledge about the basics of the structure and function of various biomolecules and the functional relationships between different biomolecules in living cells. The students will be able to understand the chemistry of cells/tissues/organisms.

UNIT-I

Carbohydrates

Structure, classification and biological importance of carbohydrates

Configurational and conformational aspects of carbohydrates

Stereochemistry: Chirality and optical activity, DL, dl and RS system of classification

Structure and function of homo- and heteropolysaccharides

Mucopolysaccharides and proteoglycans

Chemical reactions of functional groups present in carbohydrates

UNIT-II

Lipids

Classification of lipids

Nomenclature and properties of saturated and unsaturated fatty acids

Chemical composition and properties of triglycerides

Structure, properties and functions of phosphoglycerides and sphingolipids

Structure and functions of steroids (cholesterol and bile acids)

Lipoproteins: Composition and biological role

Eicosanoids: prostaglandins, thromboxanes, leukotrienes

UNIT-III

Proteins

Structure and physiochemical properties of amino acids

Peptide and Peptide bond

Chemical synthesis of peptide

Primary structure of proteins (end group analysis, peptide cleavage and sequence determination)

Dihydryl angles and Ramachandran plot

Secondary structure of proteins: alpha helical and beta pleated structures, motifs and domains Super

secondary structures

Structures of fibrous proteins like collagen, keratin, and elastin

Tertiary and quaternary structure of proteins: forces stabilizing the structure of proteins

Structure and function of hemoglobin and comparison with myoglobin

Classification of proteins based on the structures like Zn finger, leucine zipper proteins Protein folding and stability, folding pathways, role of accessory proteins in protein folding

UNIT-IV

Nucleic Acids

Primary, secondary and tertiary structure of DNA

Properties of DNA: DNA stability, DNA flexibility, Base conformations, Sugar ring puckering,

Structural polymorphism of DNA (A, B, C, Z, H, G and I-DNA, Hairpin and Cruciform DNA)

Denaturation and annealing of DNA, Cot Curves

DNA as a genetic material

RNA: Structure, function and types of RNAs

Books Recommended:

1. Lehninger Principles of Biochemistry- Nelson DL and Cox MM-WH Freeman and Company.

2. Fundamentals of Biochemistry: Life at the Molecular- Voet D, Voet JG and Pratt CW- John Wiley & Sons.

3. Biochemistry-Berg JM, Tymoczko JL and Stryer L- W.H. Freeman and Co. New York.

4. Biochemistry: The Molecular Basis of Life- McKee T and McKee JR-McGraw-Hill Higher education.

5. Biochemistry and Molecular biology- Elliott WH and Elliott DC- Oxford University Press.

6. Principles of Biochemistry- Zubay Geoffrey -McGraw Hill College.

Course Title: CELL BIOLOGY Course Code: BCH24-102CR

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: To introduce students to the fundamentals of cell biology like cell organelles, cell membrane, endomembrane system, cytoskeleton, cellular transport, cell-extracellular matrix interaction and cell division.

Course Outcome: After completing this course, the student will have understood the basic and advanced concepts in Cell Biology. The students will develop the fear idea of the functioning of the cell and its organelles in detail. Also the students will develop the concept of role of cell organelles in cellular metabolism and other functions. Further, the students will essentially build the concepts of cell cycle regulation, cell division and intracellular communication.

UNIT-I

Cell Membrane

Chemical composition, Structure and function of membrane proteins and membrane lipids Membrane Fluidity, Membrane potential, Plasma membrane dynamics (endocytosis, exocytosis) Transport across membranes (passive and active transport mechanisms)

Lipid rafts and membrane

Organelles

Introduction to organelles and their functions

Mitochondria - structure and function, Golgi complex - structure and function

Vesicle transport (introduction to vesicular trafficking), lysosomes, plant vacuoles, and peroxisomes

Cell wall structure and function in plant cells

Organelle biogenesis and inter-organelle communication

UNIT-II

Endomembrane System

Introduction and approaches to study endomembrane, Endoplasmic reticulum: structure and function, ER- stress and unfolded protein response

Nucleus and Genetic Material

Structure and function of nucleus and nucleolus, Nuclear envelope and nuclear pores

Chromosome and chromatin structure

Structure and composition of a gene

UNIT-III

Cell Cycle

Introduction to the cell cycle, Cell cycle and its stages, Regulation of cell cycle, Checkpoints in the cell cycle Cell cycle and cancer, Apoptosis (programmed cell death)

Cell Division

Mitosis - Prophase, prometaphase, metaphase, anaphase, telophase, cytokinesis

Motor proteins and their role in cell division

Meiosis - Stages of meiosis, Genetic recombination during meiosis

Meiosis and its role in genetic diversity and evolution

UNIT-IV

Extracellular Interactions

Extracellular matrix and extracellular space, Interaction of cells with extracellular material

Cell-ECM interaction (integrins and focal adhesions)

Extracellular vesicles and exosomes in cell communication

Cell-Cell Interactions

Cell-cell adhesion, Cell junctions (desmosomes, gap junctions, hemidesmosomes, tight junctions)

Mechanotransduction and cellular responses to mechanical signals

Introduction to cytoskeleton and its components, Microtubules, Intermediate filaments, Microfilaments

Cell motility and migration Advanced imaging techniques for cytoskeletal dynamics (e.g., super-resolution microscopy)

Books Recommended:

- 1. Molecular biology of the cells-Albert B, Bray D and Lewis J- Garland Publications, New York.
- 2. Cell and Molecular Biology: Concepts and experiments- Karp G, John HD-Wiley & sons, New York.
- 3. The Cell: A Molecular Approach- Cooper GM- Sunderland: Sinauer Associates, Inc.
- 4. Molecular cell Biology-Lodish H, Arnold B, Zipursky SL, Matsudaira P and Baltimore D-WH. Freeman and company, New York.

win him han

Course Title: BIOENERGETICS Course Code: BCH24-103CR

Credits: 02

Max. Marks: 50 (40+10)

Course Objective: To understand the basic concepts of bioenergetics and architecture of electron flow in the electron transport chain and the fundamentals of ATP generation in mitochondria.

Course Outcomes: On completion of the course, the student will be able to understand the energy transformation and thermodynamics in biological systems, coupled reactions, high-energy compounds, and the ATP/ADP cycle. Moreover, students will be well versed in the architecture of electron flow in the electron transport chain and the fundamentals of ATP generation in mitochondria.

UNIT-I

Water

Physical properties and structure of water, hydrogen bonding, solvent properties of water Ionization of water

Bioenergetics:

Energy transformation by biological systems

Laws of thermodynamics: first and second laws of thermodynamics

Concept of free energy and standard free energy change

Determination of free energy change for a reaction

Equilibrium constant and standard free energy change

Standard reduction potential and its relationship with free energy change

High energy compounds: ATP as universal energy currency in biological systems; ATP/ADP

cycle Other high-energy compounds

Coupled reactions: Coupling of energetically unfavorable and favorable reactions

UNIT-II

Metabolite transport across mitochondrial membrane

Structural organization of respiratory chain

Electron flow in respiratory chain

Inhibitors and uncouplers of ETC

Oxidative phosphorylation

Coupling of oxidation and phosphorylation

Structure and function of ATP-synthase complex

Short-circuiting of proton gradient

Regulation of rate of oxidative phosphorylation

Books Recommended:

- 1. Principles of Bioenergetics- Skulachev VP, Bogachev AV and Kasparinsky FO- Springer-Verlag Berlin and Heidelberg GmbH & Co. K.
- 2. Fundamentals of Biochemistry: Life at the Molecular- Voet D, Voet JG and Pratt CW- John Wiley & Sons. In.
- 3. Biochemistry-Berg JM, Tymoczko JL and Stryer L- W.H. Freeman and Co. New York.
- 4. Lehninger Principles of Biochemistry- Nelson DL and Cox MM-WH Freeman and Company.

5. Biochemistry-Garrett RH and Grisham CM-Brooks/Cole, Cengage Learning.

Mila

Course Title: LABORATORY COURSE-I

Course Code: BCH24-104CR

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: The objective of the course is to provide students the knowledge of safety measurements in biochemistry laboratory and to acquaint them with various procedures for quantitative estimation of biomolecules and purification of proteins.

Course Outcome: After completing this practical course, the students will have a thorough understanding of the risks that can arise in the Laboratory, the safety precautions that must be taken there, and how to handle various instruments. They will be ready to plan and carry out experiments like quantitative estimation of various carbohydrates, proteins, and cholesterol. The students will also be able to plan and carry out experiments like isolation, purification and identification of proteins, and perform PAGE, SDS-PAGE and gel filtration chromatography. The students can impart the knowledge gained from this practical training in diagnostic setups.

- · Safety measures in laboratories
- · Handling and disposal of chemicals and biological materials
- · Introduction to laboratory equipment and instrumentation
- · Preparation of solutions
- · Concept of pH and buffers
- · Quantitative estimation of proteins by
 - i) Lowry's method
 - ii) Bradford's method
 - iii) UV-Spectrophotometric method
- · Isolation and purification of proteins
- · Gel filtration chromatography
- Polyacrylamide gel electrophoresis of purified proteins
- Molecular weight determination by gel filtration chromatography and SDS-PAGE
- · Quantitative estimation of cholesterol by Zlatki's method
- Quantitative estimation of glucose by Nelson Somogy's method

Books Recommended:

- 1. Biochemical Calculations- Segel IH- John Wiley and Sons Inc.
- 2. An Introduction to Practical Biochemistry-Plummer DT -Tata McGraw Hill.
- 3. Principle and Techniques of Biochemistry and Molecular Biology, Wilson K and Walker JM-Cambridge University Press.
- Molecular Cloning: A Laboratory Manual (volumes I, II & III) Green and Sambrook- Cold Spring Harbor Laboratory Pub.

Course Title: PLANT BIOCHEMISTRY

Course Code: BCH24-101DCE

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: To provide in-depth knowledge about photosynthesis, secondary metabolism, nitrogen fixation, plant hormones and response of plants to biotic and abiotic stress.

Course Outcome: Students will have enhanced knowledge of the principles of plant biochemistry to analyze and understand the biochemical processes and metabolic pathways involved in crop growth, metabolism and stress responses. The students should be able to demonstrate effective communication and extension skills to disseminate knowledge and technologies related to plant biochemistry. The students will be well-versed with the processes of photosynthesis, nutrient requirements of plants, secondary metabolites and growth regulators of plant systems.

UNIT-I

Photosynthesis

Photosynthesis in higher plants - general concepts Organization of the photosynthetic apparatus Mechanism of electron transport in photosynthesis Proton transport and ATP synthesis Calvin cycle and its regulation C4 and CAM pathways Repair and regulation of photosynthetic machinery Photorespiration and its significance

UNIT-II

Assimilation of mineral nutrients

Nitrate and ammonia assimilation and their incorporation into amino acids Biochemistry of nitrogen fixation, nitrogenase complex and its functions Nitrogen fixation genes and their regulation Sulfate reduction and assimilation Sulfite oxidation

UNIT-III

Special features of secondary plant metabolism

Secondary metabolites - terpenes, phenolics, alkaloids, tannins, lignins, lignans, and surface waxes - their

biosynthesis and physiological role

Plant defense mechanism against biotic (pathogens) and abiotic stress (water, temperature and salt) Translocation of inorganic and organic substances

Pathways of translocation and mechanism of translocation in the phloem

UNIT-IV

Plant growth regulators

Auxins

Chemical nature, biosynthesis and metabolism

Physiological and developments effects,

Molecular basis of its action

Gibberellins

Chemical structure, biosynthesis, metabolism and mechanism of its molecular effects

Properties and biological role

Cellular and molecular modes of cytokinin action

Abscisic acid

Chemical structure, metabolism and transport

Molecular effects in the regulation of growth and development

Books Recommended:

1. Plant physiology-Taiz L and Zeiger E-Sinauer Associates Inc., Sunderland.

2. Introduction to plant physiology- Hopkins WG and Huner N- John Wiley & Sons, Inc.

3. Plant Biochemistry- Heldt HW and Piechulla B- Academic Press.

4. Plant Biochemistry-Dey PM and Harborne JB- Academic Press.

5. Biochemistry and Molecular Biology of Plants-Buchanan, Greussem and Jones-AAPS.

Course Title: BIOCHEMICAL TECHNIQUES

Course Code: BCH24-102DCE

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: The objective of the course is to make the students familiar with various biochemical techniques used in biological sciences and the emerging areas of biochemistry along with underlying principles.

Course Outcome: On completion of this course, the students will have enough knowledge to join the research programs or join the relevant industry in the field of molecular cell biology, genomics, and proteomics. The students will be mature enough to integrate theory with the bench. The students can develop hypotheses, craft novel research proposals and test their hypotheses and research questions on the bench.

UNIT-I

Centrifugation

Basic principle of centrifugation Factors affecting sedimentation

Types of centrifugation including differential, density gradient and ultracentrifugation

Analytical and preparative centrifugation

Applications of centrifugation

Chromatography

Basic principle and applications of chromatographic techniques:

Gel filtration chromatography, Affinity chromatography, Gas chromatography

Ion Exchange chromatography, High-pressure liquid chromatography

UNIT-II

Electrophoresis

Types of electrophoresis

Factors affecting electrophoretic mobility

Uses of electrophoresis

Isoelectric focusing

Analysis of biomolecules using UV/visible, fluorescence spectroscopy

Use of radioisotopes in biology

Their detection, measurement and safety guidelines

UNIT-III

Different blotting techniques

Northern, Southern

Polymerase chain reaction

Overlap extension PCR

RT-PCR

Principles of - RFLP, RAPD and AFLP

techniques Site directed mutagenesis

Preparation and analysis of RNA and DNA probes

Detection of molecules in living cells, in situ localization by techniques such as FISH and GISH

Methods for analysis of gene expression

Global gene expression analysis using micro array

Flow-cytometry

Microscopy

Light, electron (scanning and transmission), Phase contrast, Fluorescence microscopy

Immunoelectron microscopy and Confocal microscopy

Freeze- fracture techniques

ELISA, RIA, Florescent IA

Books Recommended:

 Principles and Techniques of Biochemistry and Molecular biology - Wilson K and Walker J-Cambridge University Press.

2. Modern Experimental Biochemistry-Rodney F Boyer- Benjamin Cummings publishing company In

3. Physical Biochemistry: Applications to Biochemistry and Molecular Biology, David Freifelder-W.H. freeman and Company.

4. Physical Biochemistry: Principles and Applications-David Sheehan-John Wiley.

Mrs per 1 2

5. Principles of Physical Biochemistry- Holde KEV, Jhonson WC and ShingHo P-Prentice Hall Inc.

Course Title: FUNDAMENTALS OF BIOCHEMISTRY

Course Code: BCH24-001OE

Credits: 02

Max. Marks: 50 (40+10)

Course Objective: To familiarize students with the general structure, properties and functions of carbohydrates, amino acids, proteins and nucleic acids. In addition this course also imparts basic knowledge on cell biology.

Course Outcome: This course is meant for non-biochemistry students. After attending this open elective course, the non-biochemistry students will have the basic understanding of biomolecules, their function and importance in the functioning of cell in living systems.

UNIT-I

Water and its role in biological systems Introduction and roles of biomolecules of life

Carbohydrates

Lipids

Nucleic acids

Micronutrients

UNIT-II

Cell as a basic unit of life Cell components Functions of the various components Cell division: mitosis and meiosis Role of cell division in propagation Cell death and its causes

Books Recommended:

- 1. Lehninger Principles of Biochemistry- Nelson DL and Cox MM-WH Freeman and Company.
- 2. Biochemistry-Garrett RH and Grisham CM- Brooks/Cole, Cengage Learning.
- 3. Cell and Molecular Biology: Concepts and experiments- Karp G, John HD- Wiley and sons.

Kin Amy

SEMESTER II

Course Title: METABOLISM Course Code: BCH24-201CR

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: To understand the fundamentals of cellular metabolism of carbohydrates, lipids, aminoacids, and nucleic acids and various associated metabolic disorders.

Course Outcome: On completing the course, the students are able to explain/describe major pathways involved in carbohydrate, lipid, amino acid and nucleic acid metabolism and the various types of inborn errors of metabolism and the strategies. The basic concepts from this course are linked to that from other courses so that at the end of the semester the student is able to come up with a clear understanding of the physiological functioning of the cell/organism.

UNIT-I

Carbohydrate metabolism and its regulation

Glycolysis and regulation

Citric acid cycle, its function in energy generation and biosynthesis of energy rich-bonds, regulation

Pentose phosphate pathway and its regulation

Alternate pathways of carbohydrate metabolism

Gluconeogenesis, Glycogenolysis

Biosynthesis of glycogen and starch

Disorders of carbohydrate metabolism

UNIT-II

Lipid metabolism and its regulation

Fatty acid oxidation- α , β , ω , oxidation and lipo-oxidation

Fatty acid biosynthesis- Acetyl CoA carboxylase, Desaturase and elongase

Biosynthesis of triacylglycerols, Phosphoglycerates and sphingolipids

Biosynthetic pathways for terpenes, steroids and prostaglandins

Ketone bodies- Formation and utilization

Regulation of lipid metabolism -hormonal/enzymatic

Interactions between carbohydrate and lipid metabolism -

Role of insulin and adiponectin

Disorders of lipid metabolism

UNIT-III

Amino acid metabolism

Metabolic fate of amino groups

Pathways of amino acid catabolism

Nitrogen excretion and urea cycle

Biosynthesis of amino acids

Derivatives of amino acids

Regulation and disorders of amino acid metabolism

UNIT-IV

Nucleic Acid metabolism

Degradation of purines and pyrimidines

Biosynthesis and regulation of purine and pyrimidine nucleotides

Denovo and salvage pathways

Biosynthesis of ribonucleotides, deoxyribonucleotides and polynucleotides

Structure and regulation of ribonucleotide reductase

Inhibitors of nucleic acid biosynthesis

Disorders of nucleic acid metabolism

Books Recommended:

1. Lehninger Principles of Biochemistry- Nelson DL and Cox MM-WH Freeman and Company.

2. Fundamentals of Biochemistry: Life at the Molecular-Voet D, Voet JG and Pratt CW-John Wiley & Sons, Inc.

3. Biochemistry-Berg JM, Tymoczko JL and Stryer L- W.H. Freeman and Co. New York.

4. Biochemistry-Garrett RH. and Grisham CM-Brooks/Cole, Cengage Learning.

5. Medical Biochemistry-Baynes J and Dominiczak M-Philadelphia: Elsevier Mosby.

1

Session/Year 2024 Onwards

Artice Bud

Estitue

Course Title: MOLECULAR BIOLOGY

Course Code: BCH24-202CR

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: The objective of the course is to give in-depth information about the mechanisms of DNA replication, transcription and translation together with the regulation of gene expression in prokaryotic and eukaryotic systems.

Course Outcome: On completing this course, the students will be able to explain or discuss how the genetic information encrypted in the DNA is trickled down into the proteins to run the cellular physiology. The students will have the thorough concepts of DNA replication, transcription, translation and its regulation in prokaryotes, eukaryotes and viruses.

UNIT-I

Replication

Replication in prokaryotes and eukaryotes

Unit of replication

Replication Origin and Replication Fork

Enzymes involved in replication

Initiation, Elongation and Termination of Replication

Fidelity of Replication

Recombination and DNA repairs

UNIT-II

Transcription

Transcription in prokaryotes and eukaryotes

Transcriptional factors and their role

RNA polymerases

Formation of initiation complex

Elongation and termination

Inhibitors of transcription

RNA processing, splicing, polyadenylation, capping

UNIT-III

Regulation of gene expression in

Prokaryotes (Operon model)

Eukaryotes (role of chromatin remodeling in transcriptional regulation)

Viruses

Transcriptional activators and repressors

Classes of transcriptional factors

Different types of RNAs for transcriptional regulation: miRNA, lncRNA, circularRNA

UNIT- IV

Translation

Genetic code

General characteristics of genetic code

Deciphering of genetic code

Ribosomes as the site of protein synthesis, polysomes

Activation of amino acids

Chain initiation, elongation and termination in prokaryotes and eukaryotes

Control of translation (Role of Guanine nucleotides)

Translational fidelity, Kinetic proof reading

Positive and negative regulation of translation

Inhibitors of protein synthesis

Books Recommended:

1. Molecular Biology-Weaver Robert-McRraw-Hill New York.

2. Molecular biology of the cells- Albert B, Bray D and Lewis J- Garland Publications New York.

3. Cell and Molecular Biology: Concepts and experiments- Karp G and John HD- Wiley & sons, New York.

4. Molecular Cell Biology-Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, and Darnell J- W.H.Freeman and Co Ltd.

5. Molecular Biology of the Gene- Watson JD, Baker TA, Bell SP et al - Pearson publishing

Lewin's Genes XI- Krebs JE, Goldstein ES, Kilpatrjck-Jones and Bartlett Learning.

Session/Year 2024 Onwards

Mr. pull 1:

Course Title: ADVANCED TECHNIQUES

Course Code: BCH24-203CR

Credits: 02

Max. Marks: 50 (40+10)

Course Objective: The objective of this course is to offer advanced knowledge about the various molecular and cell biology techniques to study protein-protein interactions, protein-DNA interactions, gene silencing, genome editing and sequencing.

Course Outcome: On completion of this course, the students will have enough knowledge to join the research programs or join the relevant industry in the field of molecular cell biology, genomics, and proteomics. The students will enough knowledge about the various molecular and cell biology methodologies e.g. protein protein interactions, protein-DNA interactions, gene silencing and genome sequencing.

Protein detection and protein-protein interaction techniques

Western blotting and its applications, Far-western blotting, dot blotting

Immunoprecipitation, Co-Immunoprecipitation

Yeast Two Hybrid screening, FRET

Eastern Blotting

Mass spectrometry

Protein-DNA interaction techniques

Gel Retardation Assay

Foot printing analysis

ChIP, ChIP-Seq

DNA pull down assays

Reporter assay (Leuciferase reporter assay)

UNIT-II

Gene silencing

RNA interference

siRNA, micro RNA and shRNA mediated gene silencing

Ribozyme mediated gene silencing

Genome Editing

Cre-Lox recombination system

Zinc Finger Nucleases (ZFNs)

TALEN system

CRISPR-Cas9

technology DNA

Sequencing

Next generation sequencing

Sequencing while synthesizing/Pyrosequencing

Ion Torrent/semiconductor sequencing

Genome wide sequencing (GWS) and Whole genome gene sequencing (WGS)

Transcriptome and Exome sequencing

Books Recommended:

- 1. Molecular Biology of the Genes-Watson JD, Hopkins NH, Roberts JW and Weiner AM Benjamin/Cummings Publishing Company Inc.
- 2. Genomes- Brown TA- Garland Science
- 3. Genetics: Analysis of Genes and Genomes- Hartl DL and Jones EW- Jones and Bartlett publishers
- 4. Principles of Gene Manipulations- Old RW and Primrose SB- Blackwell Scientific Publications
- 5. Molecular Biology- Weaver Robert McRraw-Hill, New York

Course Title: LABORATORY COURSE-II

Course Code: BCH24-204CR

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: To provide the hands-on experience in isolation and purification of DNA and RNA, PCR technology and cDNA synthesis.

Course Outcome: After completing this practical course, the students will be able to plan and carry out experiments such as isolation and purification of DNA and RNA using various molecular biology methods. In addition, the students will be able to design the primers, amplify any specific gene using PCR technology, confirm PCR product using restriction digestion. Moreover, the students will have expertise in site directed mutagenesis, cDNA synthesis and recombinant protein expression and purification using affinity chromatography technique. In conclusion the course will prepare the students for PhD programme in molecular biology and protein biochemistry fields or help them to set up the diagnostic laboratories after undergoing due procedures with relevant quarters.

- Extraction and assay of enzymes
- Effect of temperature, pH, and time on enzyme activity
- Isolation of DNA: Different Methods, Different sources
- Quantification of DNA using Spectrophotometry
- Amplification of a DNA by PCR
- Purification of PCR product
- Restriction digestion of PCR product
- Isolation of RNA from cells
- cDNA synthesis
- Site directed Mutagenesis
- Expression and purification of recombinant proteins

Books Recommended:

- Molecular Cloning: A Laboratory Manual (volumes I, II & III) Green and Sambrook- Cold Spring Harbor Laboratory Pub.
- 2. Principles of Gene Manipulations- Old RW and Primrose SB- Blackwell Scientific Publication, London.
- 3. An Introduction to Practical Biochemistry-Plummer DT- Tata McGraw Hill.
- 4. Basic Biochemical Methods- Alexander RR and Griffith JM -Wiley publications.
- 5. Experimental Biochemistry- Switzer RW and Garrity LF W.H. Freeman and Co.

Julia 11 h 2.

Course Title: ENZYMOLOGY Course Code: BCH24-201DCE

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: To provide in-depth knowledge about enzymes and their mechanism of action, enzyme kinetics, regulation, inhibition and applications of immobilized enzymes.

Course Outcome: After completion of the course, the student will be able to understand the thermodynamic and molecular basis of catalysis, the mechanisms of enzyme action, the kinetics of enzyme-catalysed reactions and enzyme inhibitors, enzyme regulation and its physiological importance in the cell, enzyme immobilization, and its applications in industry, biomedicine, and research. The students will be ready to opt for applied biology or medical laboratory sciences as their careers.

UNIT-I

Enzyme classification and nomenclature

Impact of enzymes on Gibbs free energy (ΔG) and Activation energy (ΔG^{\ddagger}) of reactions

Methods of examining enzyme - substrate (ES) complexes

Enzyme kinetics

An introduction, factors influencing enzyme reaction velocity

Henri and Michaelis Menten equation, Briggs-Haldane modification

Significance of K_m, Catalytic efficiency and turnover number

Determination of K_m and V_{max} using Lineweaver-Burk plot, Eadie-Hofstee plot, Hanes-Woolf plot

Bisubstrate Reactions

Random Bi Bi, Ordered Bi Bi and Ping Pong reaction mechanism

UNIT-II

Enzyme inhibition

Reversible inhibition- Mechanism and kinetics of competitive, uncompetitive, noncompetitive and mixed Inhibition, Determination of inhibitor constants

Irreversible inhibition-Group specific, Affinity labels and Suicide inhibitors

Enzyme assays: Types- Continuous and discontinuous assays

Mechanism of catalysis of -

Serine proteases

Triose phosphate isomerases

UNIT-III

Enzyme regulation

General mechanism of enzyme regulation

Allosteric enzymes

Sigmoidal kinetics and its physiological significance

Structure and functions of ATCase; cooperative binding, homotropic and heterotropic interactions

Symmetric and sequential modes for action of allosteric enzymes and their significance

Feedback inhibition and feed forward stimulation

Reversible and irreversible covalent modifications of enzymes

Isoenzymes and their physiological significance

UNIT-IV

Immobilization of enzymes

Methods of enzyme immobilization

Properties of Immobilized enzymes

Effects of partition on kinetics and performance with particular emphasis on changes in pH and hydrophobicity

Applications of immobilized enzymes

Books Recommended:

- Enzymes: Biochemistry, Biotechnology, Clinical Chemistry- Trevor Palmer and Philip Bonner-Chichester: Horwood, Chicago.
- 2. Lehninger Principles of Biochemistry- Nelson DL and Cox MM- WH Freeman and Company.
- Fundamentals of Biochemistry: Life at the Molecular Level Voet D, Voet JG and Pratt CW-Wiley Publishing.
- 4. Biochemical calculations- Segel IH-John Wiley and Sons, New York.

My May

5. Enzyme Kinetics: Catalysis and Control- Purich DL - Academic Press, Elsevier, UK.

Course Title: MICROBIOLOGY Course Code: BCH24-202DCE

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: The aim of the course is to make students understand the fundamentals of microbiology, like structure and classification of bacteria and viruses; microbial nutrition, growth, and genetics; and antimicrobial

Course Outcome: Students graduating with a course in Microbiology will be able to: 1) define/explain within multiple microbiology disciplines the core theories and practices. 2) describe/explain the processes used by microorganisms for their replication, survival, and interaction with their environment, hosts, and host populations; 3) explain the theoretical basis of the tools, technologies and methods common to microbiology; and 4) demonstrate practical skills in the use of tools, technologies and methods common to microbiology, and apply the scientific method and hypothesis testing in the design and execution of experiments.

A brief introduction to microorganisms

Ultrastructure of bacterial cell wall

Structure and functions of peptidoglycan in gram positive and gram negative organisms

Functions of polymeric components in outer membrane and acidic polymers in gram negative organisms

Microbial growth Different phases of microbial growth, Measurement of microbial growth, Growth kinetics

Quorum sensing

Control of microbial growth-physical and chemical methods

Nutritional requirements of microorganism

Factors affecting microbial growth

Nutritional classification of microorganisms

Mechanism of bacterial phosphotransferase system (PTS) and ABC transport system

Transport and uptake of micronutrients

Microbial culture media

Isolation, culture, identification and preservation of bacteria

Microbial genetics

Modes of genetic exchange in microbes- Conjugation, Transformation, Transduction

Antimicrobial agents-their classification

Mechanisms of action of antimicrobial agents

Selective toxicity and therapeutic index

Mechanism of antibiotic resistance

Multidrug resistance, Superbugs

Human microbial flora

Pathogenicity, virulence factors, bacterial toxigenecity

UNIT-IV

Virus classification

Structure of virus

Viral proteins and methods of assay

Virus- host interaction-Lysogeny and lytic cycle

Emerging and re-emerging viral diseases-

SARS, Influenza, Dengue, AIDS, Nipah virus disease and Zika virus disease

Books Recommended:

- 1. Prescott's Microbiology- Willey J, Sandman K and Wood D- McGraw-Hill Education.
- 2. Microbiology: An Introduction- Tortora GJ, Funke BR, Case CL-Pearson Education.
- 3. Microbiology: Concepts and Applications-Pelczar MJ, Chan ECS and Krieg, NR- McGraw-Hill Education.
- 4. General Microbiology- Stainier RY, Deudroff M and Adelberg EA- Palgrave Macmillan.
- 5. Principles of virology-Flint J, Racaniello VR, Rall GF, Hatziioannou T and Skalka AM- ASM Press.

My fresh 11

Course Title: PROTEIN BIOCHEMISTRY

Course Code: BCH24-002OE

Credits: 02

Max. Marks: 50 (40+10)

Course Objective: To familiarize students with the structure, properties and functions of amino acids and proteins. The course will also make the students understand the different levels of protein structure.

Course Outcome: This course is meant for non-biochemistry students. After attending this open elective course, the non-biochemistry students will have the basic understanding of amino acids and proteins and their structure, classification and functions.

UNIT-I

Amino acids - the building blocks of proteins Structure and physiochemical properties of amino acids Classification of amino acids: structural, nutritional, polarity and metabolic Functions and food sources of amino acids Peptide bond: formation and characteristics

Protein - a molecule with myriad of functions Structure of proteins Primary structure of the protein Secondary structure, types Tertiary structure, forces stabilizing tertiary structures Quaternary structures Classification of proteins Functions of proteins

Books Recommended:

- 1. Lehninger Principles of Biochemistry- Nelson DL and Cox MM-WH Freeman and Company.
- 2. Biochemistry-Berg JM, Tymoczko JL and Stryer L- W.H. Freeman and Co. New York.
- 3. Principles and Techniques of Biochemistry and Molecular biology Wilson K and Walker J-Cambridge University Press
- 4. Modern Experimental Biochemistry- Rodney F Boyer- Cummings publishing company Inc.

Mu III

Course Title: CHRONIC DISEASES

Course Code: BCH24-001GE

Credits: 02

Max. Marks: 50 (40+10)

Course Objective: To familiarize students with the causes, management and treatment of common chronic diseases such as diabetes mellitus, cardiovascular and neurodegenerative diseases.

Course Outcome: At the end of this course, the students will be well versed with chronic disease such as diabetes mellitus, cardiovascular and neurodegenerative diseases. The students will be aware about the causes, symptoms and management of these most common chronic diseases prevalent nowadays.

UNIT-I

Diabetes Mellitus

Types, causes, Symptoms & risk factors Long term complications of diabetes mellitus Dietary & life style factors for management Treatment strategies Cardiovascular Diseases (CVD)

Types of CVD Prevention and Management of CVD Role of obesity and Cholesterol in CVD Treatment strategies

UNIT-II

Alzheimer's disease Causes and symptoms Current treatment options Parkinson's disease Causes and symptoms Pathophysiology (dopaminergic system dysfunction, Lewy bodies) Treatment strategies

Books Recommended:

- 1. Textbook of medical physiology- Hall E and Guyton AC-PA: Saunders/Elsevier.
- 2. Teitz Fundamentals of Clinical Biochemistry- Burtis CA, Ashwood ER and Bruns DE- Saunders, Elsevier.
- 3. Harrisons Manual of Medicine, US: McGraw-Hill Professional

July July 11 Disting

SEMESTER III

Course Title: IMMUNOLOGY Course Code: BCH24-301CR Credits: 04

Max. Marks: 100 (80+20)

Course Objective: The objective of the course is to impart knowledge on the components associated with immune system and molecular mechanism of their working, MHC, hypersensitivity, transplantation and hybridoma technology.

Course Outcome: On completion of this course, the students will develop critical thinking for various immunological processes. They will be able to clearly state the role of innate and adaptive immune systems, compare humoral versus cell-mediated immune responses, and identify and characterize cytokines of particular immune importance. The students will understand the significance of the MHC complex in terms of immune response and transplantation, be able to describe lymphocyte development and the expression of their receptors, and be able to provide an overview of the host (immune system)-pathogen interactions. The students will have all the theoretical knowledge about the production of monoclonal antibodies using hybridoma technology, antibody fragments, vaccines, and cancer immunotherapy.

UNIT-I

Historical perspective, terms associated with immunology Antigenicity, Features of antigenicity, super antigens, adjuvants Antigen-Antibody interaction and application

Cells of immune system:

Myeloid, Mononuclear cells, T-Lymphocytes, B-Lymphocytes, NK-Cells

Primary and secondary lymphoid organs:

Thymus, Bursa of fabricus, Payer's Patch, Spleen, Lymph nodes, Mucosal associated and Cutaneous associated lymphoid tissues

UNIT- II

Immunoglobulin,

Structure, classes and subclasses

Multigene organization of Ig gene, variable region gene rearrangements, allelic exclusion Generation of diversity of Ig, Assembly and secretion of Ig, class switch, regulation of Ig transcription

Humoral and cell mediated immunity: B cell development and activation

BCR, TCR, T cell development and activation

Regulation of system: complement cascade, Biological function and its regulation

Complement fixation test

Introduction to cytokines

UNIT-III

Major Histocompatibility Complex: different classes, organization and biological function

Transcription regulation of MHC

Hypersensitivity: Type I, II, III, and IV

Autoimmunity and autoimmune diseases

Single organ and systemic autoimmune diseases

Brief introduction to Primary and secondary immunodeficiencies

Mechanisms of transplantation, Examples of organ transplantation

Examples of immune response to Viruses, bacteria, protozoa, fungal and helminthic infection

UNIT-IV

Development of Monoclonal Antibodies using

Hybridoma Technology

Monoclonal antibody, Antibody fragments and their application

Vaccination: Conventional and genetically engineered vaccines

Lymphokines - production and applications

Cancer Immunotherapy (Cart-T therapy)

Books Recommended:

1. Immunology-J Kuby, TJ. Kindt, BA. Osborne and RA. Goldsby. WH Freeman and Co. Ltd.

Fundamental Immunology- William E. Paul. Publisher: Lippincott Williams and Wilkins.

3. Essential Immunology- Ivan M. Roitt, Jonathan Brostoff and David Male- Wiley-Blackwell

Mr. feel sa

4. Immunology: An introduction- Ian R. Tizard- Saunders College Publishing.

5. Introduction to Medical Immunology-Gabriel Virella- Marcel Dekker Inc

Course Title: BIOTECHNOLOGY Course Code: BCH24-302CR Credits: 04

Max. Marks: 100 (80+20)

Course Objective: To provide detailed knowledge on recombinant DNA technology, animal and plant cell culture and fermentation biotechnology.

Course Outcome: On completion of this course, the students will develop the concepts of the applications of various techniques and the knowledge that we obtain in different areas like Cell Biology, Molecular Biology, Biochemical Techniques etc. The students will have all the theoretical knowledge about gene cloning, animal and plant cell culture, transgenic animals and plants, knockout animals and fermentation biotechnology.

UNIT-I

Recombinant DNA Technology:

Vectors: Plasmids, bacteriophages, phagemids, cosmids, YACs, and BACs

Methods of creating recombinant DNA molecule

Transformation and screening of recombinant vector

Confirmation of insert

Expression strategies in different hosts, vector and host engineering

IINIT-II

Types of restriction endonucleases

Library construction

Types of libraries:

cDNA and genomic libraries

Primary, secondary and tertiary screening methods

Site directed mutagenesis

UNIT-III

Animal Cell Culture

Primary and established cell lines

Types of various cell lines

Introduction to balanced salt solutions and simple growth medium

Role of CO2, serum and supplements, Serum and serum free media

Defined media and their applications, antibiotics

Concept of Plant Cell culture

Transgenic animals and plants

Knockout animals

Cloning of animals

UNIT- IV

Fermentation Biotechnology: definition, scope and industrial importance

Types of microorganisms used in fermentation: bacteria, yeast Fermentation process development

Media formulation and optimization, sterilization and aseptic techniques

Fermentation kinetics and scale-up considerations

Bioreactor design and operation: Types of bioreactors (stirred tank, airlift, packed bed)

Monitoring and control of fermentation parameters

Downstream Processing: recovery and purification of fermentation products

Separation techniques (filtration, centrifugation, chromatography)

Product formulation and packaging

Industrial Applications: Food and beverage fermentation, Pharmaceutical and biopharmaceutical

production, Biofuel production, Enzyme production and applications

Books Recommended:

1. Gene Cloning and DNA analysis- An Introduction- Brown TA- Wiley Blackwell Publishing.

2. Principles of Gene Manipulations- Old R.W. and Primrose, S.B.; Blackwell Scientific Publication, London.

 Molecular Biotechnology: Principles and applications of recombinant DNA- Glick BR, Patten CL and Pasternak JJ- ASM Press, USA.

 Molecular Cloning: A Laboratory Manual (volumes I, II & III)- Green and Sambrook- Cold Spring Harbor Laboratory Pub.

5. Principles of Biotechnology- Wiseman Alan- Surrey University Press, USA

11

Session/Year 2024 Onwards

KW

Shirha

Course Title: GENETICS Course Code: BCH24-303CR Credits: 02

Max. Marks: 50 (40+10)

Course Objective: To acquaint students with the fundamentals of Mendelian genetics, human genetics, population genetics, mutations and chromosomal changes.

Course Outcome: After completing the genetics course the students can explain 1) the chemical basis of heredity 2) the genetic methodology and how quantification of heritable traits in families and populations provides insight into cellular and molecular mechanisms 3) the role of genetic mechanisms in evolution 4) Mutations 5) design, execute, and analyze the results of genetic experimentation in animal and plant model systems.

UNIT-I

Introduction to Mendelian Genetics Mendel's Laws of inheritance

Gene interactions

Incomplete dominance

Co-dominance

Epistasis

Pleiotrophy

Concept of alleles

Multiple alleles

Lethal alleles

Pseudoalleles

Linkage

Sex linkage

Sex limited and sex influenced characters, chromosome mapping, tetrad analysis

Mutation and its types

UNIT-II

Human Genetics

Normal Human Karyotype

Autosomal inheritance-dominant and recessive

X-linked linked inheritance

Y-linked linked inheritance

Genetic Diseases

Pedigree analysis for the inheritance pattern of genetic diseases

Genetic counseling

Chromosomal Changes

Number variation - Euploidy (auto and allopolyploidy), aneuploidy

Structural variations - duplications, Inversions, translocations

Population genetics - gene pool, gene frequency

Hardy-Weinberg law

Non-random mating-factors influencing, heritability

Genetic polymorphism-transient and stable

Concept of molecular evolution

Books Recommended:

- 1. Concepts of Genetics-Klug WS, Cummings MR, Spencer CA and Palladino MA- Prentice Hall Internationals.
- 2. Genetics: Analysis of Genes and Genomes-Hartl, DL and Cochrane BJ- Jones and Bartlett Publishers.
- 3. Principles of Genetics- Garner EJ, Simmons MJ and Snustad DP- John Wiley & Sons Inc, N.Y.
- 4. Human Genetics-Concepts and Applications- Ricki Lewis-McGraw Hill Publishing.
- 5. Human Molecular Genetics- Strachan T and Read AP-Garland Science/Taylor and Francis Group.

KNU fred 11

Course Title: LABORATORY COURSE-III

Course Code: BCH24-304CR

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: The objective of the course is to provide the hands-on bench training in gene cloning, western blotting, immunoprecipitation, ELISA and biochemical assays to determine the activity of various diagnostic enzymes.

Course Outcome: After completing this practical course, the students will be ready to plan and carry out experiments, like gene cloning and preparation of plasmids, western blotting, immune- precipitation and ELISA. Moreover, Students will receive hands on experience of various biochemical assays to estimate the activities of some enzymes for diagnosis of diseases. They can generate and test hypotheses, and analyze data. The students would be able to troubleshoot the experimental challenges they face while doing the Ph.D. or while using their skills in research in industry setups.

- Bacterial culture
- Transformation of bacterial cells with plasmid
- Extraction of plasmid DNA
- Restriction digestion of plasmid DNA
- Gene Cloning
- Western blotting
- Immunoprecipitation
- Diagnostic tests for Apo lipoproteins, HDL cholesterol, LDL cholesterol and triglycerides
- Diagnostic tests for renal and hepatic diseases

Books Recommended:

- 1. Molecular Cloning: A Laboratory Manual (volumes I, II & III) Green and Sambrook- Cold Spring Harbor Laboratory Pub.
- 2. Principles of Gene Manipulations- Old RW and Primrose SB- Blackwell Scientific Publication, London.
- 3. An Introduction to Practical Biochemistry-Plummer DT- Tata McGraw Hill.
- 4. Basic Biochemical Methods- Alexander RR and Griffith JM -Wiley publications.
- 5. Experimental Biochemistry- Switzer RW and Garrity LF W.H. Freeman and Co.

M2 June 11

Course Title: NUTRITIONAL BIOCHEMISTRY AND ENDOCRINOLOGY

Course Code: BCH24-301DCE

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: To impart knowledge about body composition parameters, their measurement methods, energy requirements, the role and requirement of carbohydrates, fats, proteins and vitamins to our body. The course will also make the students to understand different endocrine glands and their hormones, their physiological importance in human system.

Course Outcome: The students will be able to explain the concepts regarding the biological basis of nutrition and the mechanisms by which diet can influence health. The students can develop research proposals for the study of human nutrition with concepts in nutritional sciences related to diet and disease. The students will be able to explain the psychological or behavioral activities, tissue function, sleep, digestion, respiration, excretion, mood, stress, lactation, movement, reproduction and sensory perception caused by hormones.

UNIT-I

Calorific value of foods

Measurement of energy expenditure, Direct and indirect calorimetry

BMR and SDA and factors affecting them, Energy requirements of man and woman

Factors affecting energy requirements

Recommended allowances, Balanced diet

Protein energy malnutrition (PEM),

Etiology, clinical features, metabolic disorders and management of marasmus and kwashiorkor Dietary requirement and sources of carbohydrates, Glycemic index, Protein sparing action

Simple and complex carbohydrates, Physiological actions of dietary fibers

UNIT-II

Lipid nutrition

Major classes of dietary lipids, Dietary needs of lipids,

Essential fatty acids and their physiological functions

Obesity

Genetic and environment factors leading to obesity, Obesity related diseases and management of obesity Role of leptin in regulation of body mass

Mineral nutrients

Nutritional significance of dietary calcium, phosphorus, magnesium, iron, iodine, zinc and copper

Vitamins

Dietary sources of vitamins

Biochemical functions and deficiency diseases associated with fat and water-soluble vitamins Hypervitaminosis

UNIT-III

Introduction to endocrinology

Overview of endocrine glands

Classification of hormones

Mechanism of action of hormones

Hormone receptors, Second messengers

Structure, biosynthesis, secretion, transport, mechanism of action, physiological role and pathophysiology of pancreatic and thyroid hormones

UNIT-IV

Hypothalamic-Pituitary system

Characteristics and regulation of hypothalamic and pituitary hormones

Diseases of hypothalamic and pituitary gland

Structure, biosynthesis, secretion, transport, mechanism of action, physiological role and pathophysiology of adrenal, gastrointestinal, sex hormones

Books Recommended:

- Introduction to Human Nutrition- Gibney MJ, Lanham SA- Aedin Cassidy, Hester H. Vorster, Wiley- Blackwell.
- 2. Human Nutrition and Dietetics- Garrow JS and James WPT -Churchill Livingstone Publications.
- 3. Essentials of food and nutrition-Swaminathan M-Ganesh Pub, Madras.
- 4. Textbook of medical physiology- Hall E and Guyton AC-PA: Saunders/Elsevier.
- 5. Endocrinology-MC Hadley and JE Levine-JE Pearson Education.

6. Harrison's Endocrinology-Jameson JL- McGraw-Hill.

11

Course Title: PHYSIOLOGY AND CLINICAL BIOCHEMISTRY

Course Code: BCH24-302DCE

Credits: 04

Max. Marks: 100 (80+20)

Course Objective: The course is aimed to acquaint the students with the functioning of digestive, renal, neuromuscular muscular system and associated diseases. In addition, students will also be introduced to basics of clinical biochemistry, water, electrolyte and acid/base balance, and various aspects of diagnostic enzymology that rely on the measurement and profiling of the activity of various enzymes.

Course Outcome: By the completion of this course, the Masters students are expected to: 1) Demonstrate knowledge of organ systems function. 2) Demonstrate knowledge of cellular function. 3) Demonstrate the ability to integrate physiology from the cellular and molecular level to the organ system and organismic level of organization. 4) Conduct and/or evaluate laboratory experiments in physiology.

UNIT-I

Hematology

Composition of blood

Hemostasis: Vascular spasm, Formation of a platelet plug and Blood clotting

Clotting factors, extrinsic and intrinsic pathways of blood clotting, Fibrinolysis

Prevention of blood clotting in the normal vascular system, Anticoagulants: heparin and warfarin

Neuro-muscular system

Mechanism of conduction of nerve impulse along axon, neurotransmitters

Muscle tissue: skeletal muscle, cardiac muscle, and smooth muscle

Ultra structure skeletal muscles, Neuromuscular Junction (NMJ), Generation of action potential

Excitation-contraction coupling (ECC) and Mechanism of skeletal muscle contraction

UNIT-II

Gastrointestinal physiology

Anatomy of Gastro-Intestinal Tract (GIT), Gastro-Intestinal (GI) motility: types and regulation Gastro-Intestinal (GI) Secretion, Digestion and absorption of food (carbohydrates, proteins and fats) Gastrointestinal disorders: achalasia, vomiting, peptic ulcer, diarrhea

Renal physiology

Anatomy of the Kidney and Nephron

Mechanism of Urine formation: Glomerular filtration, Tubular reabsorption, Tubular secretion

Production and maintenance of hyperosmolar renal medullary interstitium

Mechanisms for excreting diluted and concentrated urine

UNIT-III

Introduction to clinical biochemistry

Water and electrolyte balance

Body fluid compartments, Regulation of fluid exchange

Regulation of electrolyte balance, role of kidney and hormones

Disorders of water and electrolyte balance

Edema-Intracellular and Extracellular

Acid base balance

Defenses against change in H⁺ concentration

Buffering of H⁺ ions in the body fluids

Respiratory and renal control of acid base balance

Acid base disorders: Clinical causes, measurement and Analysis

UNIT-IV

Principles of diagnostic enzymology

Clinical significance of aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, alkaline phosphatase, acid phosphatase

Liver function test (LFT): Estimation of ALT, AST, ALP, AP

Kidney function test (KFT): Estimation of Creatinine, Bilirubin, Na, K,

Ca Lipid Profile: Estimation of Cholesterol, Triglyceride, HDL, LDL

Cardiac function tests and Thyroid function tests

Diagnostic significance and interpretation of glucose tolerance test

Books Recommended:

- 1. Textbook of medical physiology- Hall E and Guyton AC-PA: Saunders/Elsevier.
- 2. Principles of Human Physiology- Stanfield Cindy L-Pearson Education.
- 3. Introduction to Physiology by Davidson H and Segal MB- Academic Press.
- 4. Teitz Fundamentals of Clinical Biochemistry- Burtis CA, Ashwood ER and Bruns DE- Saunders, Elsevie
- 5. Clinical biochemistry, metabolic and clinical aspects- Marshall WJ, Stephan K Elsevier science healths

Mar Justishan has

11

Course Title: CHROMATIN BIOLOGY AND CELL SIGNALING

Course Code: BCH24-303DCE

Credits: 02

Max. Marks: 50 (40+10)

Course Objective: To familiarize the students with chromatin and its impact on theepigenetic regulation, and the signal transduction pathways associated with the cellular processes of the cells.

Course Outcome: After completion of this specialized course, the students will have knowledge of hierarchical organization of chromatin and its impact on the epigenetic regulation of biological processes such as DNA replication, gene regulation and DNA repair. Further, the students will be well versed with knowledge of complex mechanism and pathways by which different molecular pathways communicate with each other and respond to extracellular environment.

Chromatin structure - basic organization of a eukaryotic genome in nucleus

Histones, nucleosome structure

Higher-order chromatin structure

Epigenetics

Regulation of chromatin by: acetylation, methylation, phosphorylation and ubiquitination

Chromatin remodeling: a brief overview with emphasis on the role of various histone chaperones

CAF1, ASF1, FACT

ATP-dependent chromatin remodeling complexes

Euchromatin and Heterochromatin

Maintenance of chromatin structure during DNA replication and repair

UNIT-II

General principles of cell signaling- extra-cellular signaling molecules and their receptors

Autocrine, paracrine and endocrine signaling

Intra-cellular signaling molecular aspects

Signaling through G-protein coupled receptors (GPCR)

Second messengers, cAMP, Inositol-1,4,5-triphosphate, Ca2-calmodulin

Signaling through enzyme-linked receptors

Activation of receptor tyrosine kinase and downstream cascade

MAP kinase signaling pathway, PI3-Kinase/Akt pathway, Jak-STAT signaling pathway

Wnt/ β-catenin signaling pathway

Cross-talk between signaling pathways

Books Recommended:

1. Molecular biology of the cells-Albert B, Bray D and Lewis J- Garland Publications, New York.

2. Cell and Molecular Biology: Concepts and experiments- Karp G, John HD-Wiley & sons, New York.

3. The Cell: A Molecular Approach- Cooper GM- Sunderland: Sinauer Associates, Inc.

4. Molecular cell Biology-Lodish H, Arnold B, Zipursky SL, Matsudaira P and Baltimore D-WH. Freeman and company, New York.

Session/Year 2024 Om

Course Title: METABOLIC DISORDERS

Course Code: BCH24-002GE

Credits: 02

Max. Marks: 50 (40+10)

Course Objective: The objective of this course is to provide basic knowledge about the metabolism of carbohydrates, amino acids, lipids, and nucleic acids and their associated metabolic disorders to students with diverse backgrounds in life sciences.

Course Outcome: On completing this open elective course, the students are able to explain/describe metabolic disorders related to carbohydrate, amino acids, lipids and nucleic acids. The students will be in apposition to impart or decipher knowledge about various metabolic diseases e.g. Diabetes, Lactose/Fructose intolerance, Glycogen storage diseases, Phenylketonuria, Alkaptonuria, Maple Syrup Urine Disease, Nonketotic hyperglycinemia, Urea cycle disorders, Hypo and Hyperuricemia, Gout, Lesch Nyhan Syndrome, Severe Combined Immunodeficiency Disease Xeroderma pigmentosum in various clinical and healthcare settings.

UNIT-I

Introduction to carbohydrates, lipids and their metabolism Disorders of carbohydrate metabolism

Diabetes

Hereditary fructose intolerance

Lactose intolerance

Glycogen storage diseases

Disorders of Lipid Metabolism

Hypercholesterolemia

Atherosclerosis

UNIT-II

Introduction to amino acids, proteins and nucleic acids Inherited disorders of amino acid metabolism

Phenylketonuria

Alkaptonuria

Maple Syrup Urine Disease

Nonketotic hyperglycinemia

Disorders of nucleic acid metabolism

Purine and Pyrimidine metabolism related diseases,

Hypo and Hyperuricemia,

Gout

Lesch Nyhan Syndrome

Severe Combined Immunodeficiency Disease (SCID)

Xeroderma pigmentosum

Books Recommended:

1. Textbook of medical physiology- Hall E and Guyton AC-PA: Saunders/Elsevier.

Textbook of filedical physiology Hair E and Gdyled
 Harrison's Manual of medicine- Longo DL, Fauci AS, Kasper DL, Hauser SL and Jameson JL-McGraw-Hill Companies, Inc.

2 Septimina

3. Lehninger Principles of Biochemistry- Nelson DL and Cox MM- WH Freeman and Company.

SEMESTER IV

Course Title: PROJECT DISSERTATION

Course Code: BCH24-401CR

Credits: 10 Max. Marks: 250

The research project is an inevitable part of M.Sc. Biochemistry. The project can serve as a strong bridge between master's program and the research. The students get the opportunity to work in a research laboratory under the supervision of a principal investigator.

The project dissertation will be based upon short-term research work assigned by principle investigators. The dissertation will be submitted in the Department at the end of semester and evaluated. The dissertation will be assessed in its various aspects like techniques learnt, quantum and importance of results, and presentation of comprehensive project.

Course Tile: PROJECT ASSESSMENT

Course Code: BCH24-402CR

Credits: 04 Max. Marks: 100

This will include an open presentation by the students, defending their project work that will be evaluated by an external examiner (to be nominated by Head of the Department) and faculty members. The presentation will be followed by the viva voce of the students, to be carried out by the external examiner.

Course Title: HOST INSTITUTE EVALUATION

Course Code: BCH24-401DCE

Credits: 02 Max. Marks: 50

During the project, the students will be critically evaluated by the host supervisor and will be graded by them based on their attendance in the lab, daily experimental work, writing and communications skills and other criteria related to routine lab work.

Course Title: JOURNAL CLUB Course Code: BCH24-402DCE Credits: 04 Max. Marks: 100

The recent and advanced scientific papers in high profile journals will be chosen by the students in consultation with mentor teachers and then presented by the student. The presenter is supposed to have all the relevant knowledge of the article. The audience will include faculty, research scholars and PG students.

July 11

Session/Year 2024 Onwards

My

Quinha

har

Course Title: CANCER BIOLOGY Course Code: BCH24-003OE Credits: 02

Max. Marks: 50 (40+10)

Course Objective: The objective of this elective course is to provide knowledge about the nature, etiology and epidemiology of cancer as a disease, and to familiarize them to different hallmarks of cancer.

Course Outcome: On completing this open elective course, the students will have advanced concepts of the environmental and genetic causes that promote cancer.

UNIT-I

Etiology of cancer Tobacco Physical factors Chemical factors Dietary factors Viruses Cancer epidemiology

UNIT-II

Cancer Biology

Basic concepts of cancer biology

Properties of cancer cell

Hallmarks of cancer

Self-sufficiency in growth signals

Insensitivity to antigrowth signals

Evading apoptosis

Sustained angiogenesis

Limitless replicative potential

Tissue invasion and metastasis

Books Recommended:

- Cell and Molecular Biology- DeRobertis EDP and DeRobertis EMF-Lippincott Williams & Wilkins, Philadelphia, USA.
- 2. The Biology of Cancer- Weinberg R-Garland Science, NY.
- 3. Cancer Biology-Ruddon RW -Oxford University Press, NY.
- The Biological Basis of Cancer- Mckinnell RG, Parchment RE, Perantoni AO and Pierrce GB-Cambridge University Press.
- 5. Cancer Causing substances-Faik Atroshi- IntechOpen Publisher
- 6. Textbook of Cancer Epidemiology- Adami, Hunter, Lagiou and Mucci, Oxford University Press.
- Cancer Epidemiology: Principles and Methods Isabel Dos Santos Silva, IARC/WHO.

KIN DATAL II

Course Title: BIOCHEMICAL LAB. TESTS AND INTERPRETATION

Course Code: BCH24-003GE

Credits: 02

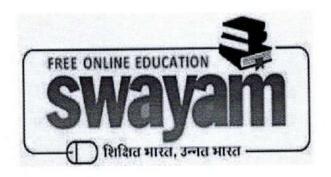
Max. Marks: 50 (40+10)

Course Objective: The objective of this elective course is to familiarize students to reference values and lab errors, and advanced concepts of various clinical biochemistry tests used in diagnosis.

Course Outcome: On completing this open elective course, the students will have advanced concepts of various clinical biochemistry tests used in diagnosis.

UNIT-I

Concept of reference values
Observed values
Blood biochemistry
Electrolytes estimation and clinical significance
Blood gas analysis
Blood sugar and its clinical importance


UNIT-II

Cardiac function tests and clinical uses Liver function tests: diagnostic importance Kidney function test importance Tumor markers

Books Recommended:

- Introduction to Clinical Biochemistry: Interpreting Blood results- Basten G Graham Basten and Ventus Publishing ApS.
- 2. Learning Guide Clinical Chemistry- Roberta Reed-Abbott Laboratories.
- 3. Teitz Fundamentals of Clinical Biochemistry- Burtis CA, Ashwood ER and Bruns DE- Saunders, Elsevier.

My III

MOOC courses available on SWAYAM platform (see the link below)

https://swayam.gov.in/explorer

Note: Students are advised to choose a relevant MOOC course as per the policy of the University of Kashmir.

for since